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Most of the information we have about the Universe
has come to us in the form of . . .

• Electromagnetic radiation

– Visible light: naked eye observations,optical
telescopes

– Full electromagnetic spectrum:  radio, IR, UV,
visible, X-rays, Gamma-rays

• Particle and nuclear astrophysics, neutrinos, cosmic rays…

These cosmic messengers provide a wealth of
information, making astronomy one of the
crowning glories of 20th century science.
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The gravitational force dominates the dynamics of
the Universe . . .

• Gravitational field – action at a
distance

• Law of Universal Gravitation
(1687)

• Fruitful legacy . . .
– Solar system dynamics
– Discovery of new planets,

both solar and extra-solar
– Motions of stars within

galaxies
– Motions of galaxies within

clusters . . . Isaac Newton (1642-1727)
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• Special relativity (1905)

– Space + time  spacetime

– Speed of light is constant

• General Relativity (1916)

– Spacetime is dynamic

– Spacetime curvature replaces
concept of gravitational field

• mass-energy causes
spacetime to curve

• particles & light follow
paths in curved spacetime

• Gravitational waves

Albert Einstein (1879 – 1955)

The gravitational force dominates the dynamics of the
Universe . . .
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A Different Type of Astronomical Messenger
Gravitational Waves . . .

• ripples in spacetime curvature
• travel at velocity v = c
• generated by matter

distributions w/ time-changing
quadrupole moments  carry
info about bulk motion of
sources

• transverse  act normal to
propagation direction

• 2 polarization states, h+ and hx

• interact weakly with matter
 carry info about deep,
hidden regions in the universe

• Hulse-Taylor binary pulsar
PSR 1913+16
– Orbital period decay agrees

with GR to within the
obs errors of < 1%

– Nobel Prize 1993
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• Characteristic amplitude

– r = distance to source

– RSch = 2GM/c2

– Q = (trace-free)
quadrupole moment of
source

– v = characteristic
nonspherical velocity in
source

Strongest sources have
large masses moving with
velocities v ~ c

Amplitudes of Gravitational Wave Sources . . .

Estimate upper limits:
• 1.4 MSun NS at

• r = 15 kpc, h ~ 10-17

• r = 15 Mpc, h ~ 10-20

• r = 200 Mpc, h ~ 10-21

• r = 3000 Mpc, h ~ 10-22

• 2.5 x 106 Msun MBH at

• r = 3000 Mpc, h ~ 10-16
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Estimating Gravitational Wave frequencies . . .

• Natural frequency

• 1.4 MSun NS, R = 10 km

fo ~ 2 kHz

• 10 MSun BH

fo ~ 1 kHz

• 2.5 x 106 MSun MBH

fo ~ 4 mHz

• Binary orbital frequency

– M = M1 + M2, M1 = M2

– a = separation

• NS/NS, a = 10 R

     fGW ~ 200 Hz

• BH/BH, a = 10 M

     fGW ~ 100 Hz

• MBH/MBH, a = 10 M

fGW ~ 4 x 10-4 Hz

2/1

3

2/1

4
3

~
4

~ !
"
#$

%
&!

"
#$

%
&

R
GMG

fo ''
(

2/1

3orbGW

1
2 !

"
#$

%
&==
a
GM

ff
'



8

Detecting gravitational waves. . .

• Resonant mass detectors, laser interferometers

• Detector of length scale L

• A passing gravitational wave causes distortion of detector
that produces a strain amplitude h(t) = _L/L

• Source waveforms scale as h(t) ~ 1/r

(graphic courtesy of B. Barish, LIGO-Caltech)



9

Resonant Mass Detectors…..

• Pioneered by Weber

• Measure distortions of large
“bar”

• Narrow band

• Spherical detectors

• International Gravitational
Event Collaboration (IGEC)

– Rome, Legnaro, Perth, LSU

– http://igec.lnl.infn.it
The Allegro detector at LSU
principal sensitivity ~ 920 Hz
(image courtesy of W. Hamilton)
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Ground-based interferometers . . .

• detect high frequency GW

• broad band
• kilometer-scale arms
• Current projects:

– LIGO: Hanford, WA, and
Livingston, LA;  L = 4 km

– VIRGO: France/Italy, near
Pisa;  L = 3 km

– GEO600: Germany/Britain,
Hanover; L = 600 m

• Typical sources: NS/NS,
BH/BH, stellar collapse,
LMXBs, . . .

Hz10 Hz 10 4
GW !! f
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LISA: Laser Interferometric Space Antenna

• NASA/ESA collaboration

• detect low frequency GW

• 3 spacecraft
– equilateral triangle

– orbits Sun at 1 AU

– 20o behind Earth in its orbit

• arm length L = 5 x 106 km

• optical transponders receive and
re-transmit phase locked light

• launch ~ 2013

• Typical sources: MBH/MBH,
Galactic binaries, NS/MBH,
BH/MBH

Hz1 Hz 10 GW
4 !!" f
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LISA / LIGO Relationship
• Complementary observations, different frequency bands

• Different astrophysical sources



13The rich variety of sources implies GWs will tell us
much about the universe….

• Collapses

• Oscillations and
    deformations

• Binaries

• Gravitational captures

• Backgrounds and bursts

• Serendipity…

* stellar collapse – Type II SNe
* accretion-induced collapse
   (AIC)
* formation of the 1st stars –
    Pop III  possible
    intermediate mass BH
* collapse of supermassive stars

to form supermassive BHs….

* neutron star modes
* BH ringdowns
* wobble radiation from
   a “mountain” on a
   spinning NS…

*Stellar binaries:
  -- short period (P ≤ 104 sec)
     galactic binaries (NS, WD,
     BH…)
  -- chirping binaries (NS, BH)

*Intermediate mass/seed BH
  binaries (M ~ 102 – 104 MSun)

*Supermassive BH binaries
  (M ≥ 105 MSun)

* compact stellar
   remnants (WD, NS, BH)
   falling into SMBH in
   centers of galaxies…
* stochastic backgrounds
   of confusion-limited
    sources
* cosmological GW
   backgrounds….
* cosmic string kinks and
   cusps

* unexpected sources…
   * dark matter?
   * dark energy?
   * ??
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Focus here on the final coalescence of binary
black holes…

    and what we can learn about astrophysics
and the cosmos by observing the
gravitational waves they emit….
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Coalescing supermassive BH binaries….

• Supermassive BHs lurk at the
centers of most, if not all,
galaxies

• Masses M ≥ 105 MSun

• Chandra X-ray observatory
found the first known system of
2 SMBH starting to merge in the
galaxy NGC 6240

– distance ~ 120 Mpc  close!

– BHs will merge in ~ few x 108

years

• Most galaxies are formed from
the merger of 2 progenitor
galaxies    merger of SMBHs

 LISA could observe roughly
several per year, out to redshifts
z > 10
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Coalescing intermediate mass or seed BH binaries…

• Black holes having masses M ~ few x 102 MSun – 104 MSun

• Predicted in hierarchical structure formation theories:
– galaxies form from successive mergers of protogalactic

fragments
– SMBHs at the centers of galaxies form from successive mergers

of smaller “seed” BHs at the centers of these fragments

• IMBH also can form
– from the collapse of massive Pop III stars that form BHs
– in stellar clusters from successive mergers of lower mass BHs

• LISA will be able to detect these systems out to redshifts
z ~ 7 – 30
 will give an unprecedented view of the merger history of
galaxies

• Ground-based detectors will see the final coalescence of
systems with masses ~ few x 102 MSun
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Coalescing stellar black hole binaries…

• Black holes having masses M ~ few x 10  - 102 MSun

• Stellar BHs are formed as the end product of the core
collapse of massive stars
– if mass of remnant core ~ 2 MSun or larger  BH will form

– BH may also form from fallback of gas onto NS, causing
collapse

• Excellent source for ground-based interferometers….
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Final Coalescence of BH binary…..

• Dominant energy loss mechanism is GW emission

• Coalescence time for binary of total mass M and separation a
(equal point masses, circular orbits):

• For binary of total mass M = 2 x 106 MSun to coalesce
within  tH ~ 1010 years

 separation a < amax ~ 2.53 x 104 M ~ 2.4 x 10-3 pc

• GW detectors will observe the end stages of this coalescence,
typically ~ 103 orbits

– LISA: will observe massive BH binaries for ~ 1 year

– Ground-based detectors: will observe stellar BH binaries
for ~ 1 minute
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Final coalescence proceeds in 3 stages . . .
• GW produced in all three phases of this evolution . . .
• Waveforms and dynamics scale with BH masses and spins
  source modeling applicable to

    stellar BHs, IMBHs & SMBHs….

(graphic courtesy of Kip Thorne)

measure
masses

and spins
of binary

BHs

detect normal
modes of

ringdown to
identify final

Kerr BH

 strong-field spacetime
dynamics, spin flips

and couplings…



20Inspiral stage…
• Slow, quasi-adiabatic inspiral driven by GW emission
     “chirp” waveform: sinusoid increasing in amplitude

& frequency as the BHs get closer together

– Eccentricity can alter waveform shape significantly (Pierro, et al.)
e = 0.274 (PSR 1534+12) e = 0.617 (PSR 1913+16)

– Also, precession effects due to BH spin (Vecchio, Kalogera….)
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Inspiral stage:

• MBH observable  by LISA for ~ months to years

• Use waveforms as templates for data analysis

by matched filtering

• If observe a sufficient number of cycles of inspiral waveform
(for LISA, ~ few months or longer) within the detector’s
frequency band, can measure redshifted masses (1+z)M:

– Chirp mass  Mc = (M1M2)3/5/[M1 + M2]1/5

– Reduced mass (less accurately)  _ = M1M2/[M1 + M2]

– Also some information on spins…

• If know cosmology to ~ 10%, invert luminosity distance
relation DL (z) to get redshift z      Mtot  (Hughes 2002)

• Typically, get (1+z)Mc to ~ 0.1% or better

 Mc to ~ 15 – 30%



22Ringdown…
• Merger  rotating, highly distorted BH

• “Rings down” to a quiescent  Kerr BH by emitting GW

• Ringdown waveforms are exponentially damped sinusoids,

dominated by the strongest l = m = 2 quasinormal mode

(Echeverria; Leaver)

• Quality factor

• Ringdowns are “burst” waveforms

For M = 2 x 106 MSun,

• Note: we observe redshifted damping timescale

• identify mass and spin of final Kerr BH
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Focus on the merger stage…

• Inspiral lasts until separation a ~ 3RSchw = 6M



• BHs leave quasi-static orbits and plunge together
• Expect ~ several cycles of gravitational radiation from merger

 “burst” waveform, observable  by LISA for ~ minutes – hours
knowledge of merger waveform important to enhance detectability

in ground-based GW observatories….

• Merger can be phenomenologically rich
– effects of spin: spin-spin and spin-orbit couplings, spin flips
– possible ejection of final BH for M1 ≠ M2

– test of General Relativity in the dynamical, nonlinear regime

• Strong, highly nonlinear, dynamical gravitational fields
• Requires numerical solution of the full Einstein

equations in 3 spatial dimensions + time…
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Using numerical relativity to evolve BH mergers…
• Einstein equations: (a,b = 0,1,2,3 – spacetime indices)

• “3+1”  split spacetime into 3-D spatial slices + time

• Kinematical conditions: freely specificable gauge choices
– lapse function _: measures proper time (_ dt) between slices

– shift vector _i: allows moving of spatial coordinates as you evolve
from slice to slice

• Metric becomes (i,j = 1,2,3 – spatial indices)

• Choice of _, _i of critical to successful spacetime
evolutions….



25

Einstein equations split into 2 sets….
• Constraint equations set conditions on spacelike slices

– Hamiltonian constraint:

– Momentum constraints:

– Constraints also serve as initial value equations

• Evolution equations in ADM (Arnowit, Deser, Misner) form:
1st order in time, 2nd order in space

– 3-metric:

– extrinsic curvature:
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Initial data for BH mergers….
• Goal: initial data for BHs representing the realistic

astrophysical state of a binary that has spiralled in by the
emission of gravitational radiation

• Need to solve 4 nonlinear constraint equations on initial slice

• Most techniques use a conformal decomposition (York, et al…)

– Split basic variables into freely specifiable and constrained

– Choose the freely specifiable pieces

– Constraints determine the remaining variables
  guaranteed solution to initial value equations

• physical 3-metric _ij : _ is conformal factor

• split extrinsic curvature into trace and trace-free parts:

• Various approaches further decompose Aij….
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How to be sure the initial data is astrophysically valid?

• Initial data sets generally contain gravitational radiation due to
the selection of free variables and the solution process
– these have largely been chosen to simplify the solution and decouple

the constraint equations

• Most current data sets for BH binaries near the last stable orbit
contain (likely unphysical) gravitational radiation ~ few percent
of the total system mass (Pfeiffer, Cook, Teukolsky 2002)

• This is comparable to the total GW energy expected for the
merger process itself !

Adopt a more physical approach….
 use binary parameters determined by PN expansion near the end of

the inspiral to inform the selection of free variables

 challenging: the metric and extrinsic curvature that emerge from
the solution process can be changed significantly from the PN input

 recent work by Tichy, et al. shows promise….
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Evolving BH binary mergers…

• Need to evolve BH binary for ~ 3.5 orbits near

the last stable orbit (LSO) at the end of the inspiral,
through merger and ringdown…and extract the GW signature

• Orbital period near LSO is P ~ 70M (possibly larger…)

 need total evolution time of ~ 1000 M or more

• Challenges:
– choice of formalism  critical for long term stability of evolution

– how to represent the BHs on a computational grid

– choice of gauge: slicing and conditions on spatial coordinates

– multiple spatial and temporal scales  adaptive mesh refinement

– boundary conditions

– choice of numerical methods (finite differencing, spectral methods)

– role of the constraint equations in evolution schemes

– parallelism and efficiency of computer code…..
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Evolving BHs…effects of the choice of formalism
• Original ADM unstable for binary BH evolutions after ~ 13 M

– exponentially growing unstable modes

– exact cause of instability is not yet known

• Conformal ADM formalisms: much better stability properties
– BSSN: Baumgarte, Shapiro, Shibata, Nakamura

– variations being developed to “tune” the system of equations and
allow longer-lived evolutions

– currently, can evolve a single BH for > several x 103 M (Yo, et al.)

– binary black hole evolutions now possible for ~ 100 M or longer
(Alcubierre, et al.)

– note: longevity also depends on gauge choices….

• Hyperbolic formulations: “mathematically desirable”
– fully first order set of equations

– introduce relatively large set of auxiliary variables

– stability of single BH runs > few x 103 M
– area of active research….



30Evolving BHs…choice of formalism
• BSSN or conformal ADM formalisms – have much improved stability

properties though with a larger set of evolution equations:

• plus additional constraint:
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31Evolving BHs…how to represent the BHs

• How to handle the singularity….
– horizon at r=2M

– asymptotically flat as r  ∞
– map within horizon as r  0 to an

    inner asymptotically flat region

• “Puncture” method:
– conformal factor _ contains 1/r terms at the centers of the BHs

– factor these out and treat them analytically  no singular terms
for initial data or evolution

– works for one or more BHs
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Grazing collision of BHs (Alcubierre, et al.)

• Puncture evolution (_i = 0)

• M1 = 1.5 M2

• BHs have general spins,

momenta

• Evolve for t = 35 M

• Formation of common apparent

horizon

• Extract l = m = 2 GW mode
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Evolving BHs…how to represent the BHs
• Excision: cut out a region containing singularity

– Event horizon: boundary between the events which emit light rays
to ∞ and those which do not
 requires knowledge of entire spacetime

– Apparent horizon: useful for evolutions
• outermost 2-surface in spatial slice whose
    outgoing null geodesics have zero expansion
• is always located within an event horizon
     it is safe to excise w/in AH

– Need to set boundary conditions at excision

– When an excised BH is moved,
     zones that were previously within

excised region are now on the
numerical grid

need methods to populate these points
with data



34Moving a BH with excision… (Shoemaker, et al.)

• Move excised BH using coordinate
transformation of stationary BH
enabled by shift _i

• Cubical, spherical excision regions

• Stable for time t ~ 100 M
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Evolving BHs…choice of lapse and shift
• Lapse function: governs slicing of spacetime

– _ = 1  slices crash into singularity

– “singularity avoiding” slices wrap up

around the singularity, but…

– stretching of slices  large gradients

• Shift vector: governs movement of

spatial coords as spacetime evolves
– _i = 0  grid points fall into BH region

– new conditions for shift vector

allow shifts that counter slice stretching

and enable longer evolutions

• Application of singularity avoiding slices and

new shift conditions  evolve punctures for > 1000 M (single
BH) and > few x 100 M (binary BHs) (Alcubierre, et al.)
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Long term evolution of single BHs… (Yo, et al.)

• Evolve a single BH, with and
without rotation

• Further modification of
conformal ADM formulation

• use new lapse and shift from
Alcubierre, et al.

• Cubical, spherical excision
regions

• Stable for times t > 1000 M,
for BHs with J/M ≤ 0.9 M
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BH mergers…computational challenges

• Strong, dynamical gravitational
fields

• Multiple scales:

– M1 ≠ M2

– _GW ~ 10 – 100 Lsource

– need large enough grid to

extract waves, and for

outer BCs

use of fixed or adaptive mesh
refinement (FMR, AMR)

(This all needs to be done in a
parallel computing
environment…)

Paramesh (Macneice, et al.)
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Evolving GWs with mesh refinement...
• Evolve source-free GW across grid

• Paramesh for mesh refinement

• With AMR: track the wave      
(New, et al.)

• With fixed mesh refinement:
– cross mesh refinement boundaries

– higher order interpolation to
remove spurious reflections at
interface boundaries (Choi, et al.)
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Evolving BHS with FMR...(Choi, et al. 2004)

• Head-on collision, M1 = M2

• Initial sepn d =5M, M = M1 + M2

• Outer boundary at 120M

• 5 levels of fixed mesh refinement

• Innermost level is located at ~ 8M
and has resolution h ~ M/4

• Metric component gxx and lapse
function _ ~ _ (Newtonian potential)



40
Extracting GWs with FMR...(Fiske et al. 2004)

• Pure GW (l = 2, m = 0) traversing several FMR regions

• Extract at 5 radii, some crossing FMR boundaries

• Amplitude ~ 1/r

• Scaled waveforms match
each other, and analytic
solution



41 Lazarus: the first astrophysical BH merger waveforms . . .
(Baker, Campanelli, Lousto, Takahashi)

• Coalescence of 2 equal mass
nonrotating BHs

• Start simulation near last stable
circular orbit

• Use 3-D Einstein solver (Cactus)
to evolve merger until BH
perturbation theory becomes
applicable

• Continue evolving numerically
using BH perturbation theory
through ringdown  final Kerr
BH

• ~ 3% of total energy emitted as
GW

• ~12% of total J emitted as GW
• final Kerr BH has spin ~ 0.7Smax
• Time measured in terms of mass:
 time in M = 5 x 10-6 sec (M/M!)

graphics courtesy of J. Baker (GSFC)
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BH binary merger is expected to be phenomenologically rich….

• Effects of spin: spin-spin and spin-orbit
couplings, spin flips…

• Mergers of spinning BHs can cause
dramatic changes in orientation of BH’s
spin axis  sudden flip in direction of
associated jet

• Can identify the winged or X-type radio
sources with galaxies in which a merger
has occurred (Merritt & Ekers)

• Possible ejection of final BH for
M1 ≠ M2

• Tests of General Relativity in the
dynamical, strongly nonlinear regime…

• Significant challenges remain…
• Numerical relativity has

made real progress in modeling
binary BH mergers…..

 stay tuned!
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“Every time you build new tools to see the universe,
new universes are discovered.  Through the ages,
we see the power of penetrating into space.”

-- David H. DeVorkin (paraphrasing Sir William Herschel)

Gravitational Waves . . .

a new kind of cosmic messenger
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