[image: image1.png]Litton

TASC

Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations

Task 3 Report

Interoperability with Existing Systems
20 January, 2001

Version 1.0

Prepared for:

NASA Goddard Space Flight Center

Mail Code 931

Greenbelt, MD 20771

Prepared by:

Litton/TASC

4801 Stonecroft Blvd.

Chantilly, VA 20151-3822

Prepared by:

Mark Clausen

Technical Lead

Approved by:

Glenn J. Higgins

Program Manager

Table of Contents

41.
Introduction

1.1
Background
4
1.2
Description of Task 3
4
2.
Design Process
4
2.1
Aries and GFDL B-grid dynamical core software description
4
2.2
Software comparison
4
2.3
Design issues
7
2.3.1
Grid conversion
7
2.3.2
Vertical coordinate
8
2.3.3
C-grid vs. B-grid initialization of B-grid core
8
2.3.4
Variable transformation (e.g., theta vs. T)
8
2.3.5
Time step
8
2.3.6
Interpolation of tendency vs. state
8
2.4
Design
9
3.
Implementation
9
3.1
Build Aries model
9
3.2
Build B-grid model
9
3.3
Build conversion utilities (grid, variables)
9
3.3.1
Grid conversion
9
3.3.2
Variable conversion
10
3.4
Build B-grid “library” – libgfdl.a
10
3.5
Build “coupler” routine to initialize B-grid dynamics
10
3.6
Integrate coupler into Aries code
10
3.7
Integrate conversion utilities into Aries code
11
3.8
Implement and integrate state-to-tendencies-to-state
11
3.9
Add call to B-grid dynamics
11
3.10
Add call to perform reverse conversion
11
4.
Problems encountered
11
4.1
Documentation / validation
11
4.1.1
Software Explanation
11
4.1.2
Software/Library Dependencies
11
4.1.3
Hardware / OS / Compiler Dependencies
12
4.2
Implementation
12
5.
Lessons Learned
14
5.1
Documentation, Documentation, Documentation
14
5.2
Codes validated for hardware/OS/compiler Combinations
14
5.3
Coding practices
15
5.4
File transfer
15
5.5
Team expertise
15
5.6
Process
15
6.
Conclusion
16

1. Introduction

1.1 Background

Over the years, NASA has amassed valuable (legacy) science codes that represent years of research and development. These codes, mainly developed in Fortran, are used to assess the impacts of natural and human-induced changes on the global environment. In parallel with NASA’s activities, other institutions (e.g., National Center for Atmospheric Research [NCAR], NOAA/NCEP [NOAA National Centers for Environmental Prediction], etc.) have also developed science codes to numerically model the global environment. Although the respective missions of these organizations are different, there is some overlap in their modeling activities and the models share similar functionality in some areas. It is hoped that components of various agency's models can be interchanged. Task 3 of the HPCC effort focuses on determining the level of difficulty in integrating model components developed by two separate organizations.

1.2 Description of Task 3

The goal of this task is to insert GFDL's B-grid dynamical core into NSIPP's Aries model. It is important to note that a successful model integration was not a requirement of this task. The main goal of this task was to provide a better understanding of potential problems we could face in developing and implementing frameworks.

2. Design Process

The first part of the design process centers on obtaining an understanding of the individual software components. This includes understanding the routines required and the variables used as inputs and outputs at the various interfaces. Next, the two models are compared; specifically, the input and output variables. Once these are understood, design issues are developed. Finally, the initial design is developed and updated as needed.

2.1 Aries and GFDL B-grid dynamical core software description

Understanding of the codes was accomplished by examination of the software and available documentation. Additionally, further insight was also obtained via discussions with key personnel as available. NSIPP personnel (primarily Max Suarez) were helpful. Unfortunately, GFDL personnel were not as available. The descriptive material in Annex A (and provided in the 12 December briefing) is a summary of the software descriptions and some design notes.

2.2 Software comparison

After reviewing each organization’s software independently, the next step was to compare the inputs and outputs of the GFDL dynamical core to those variables available at the dynamical core interface. Table 1 shows the comparison of data at the Aries to GFDL interface. Table 2 shows the comparison of data at the GFDL to Aries interface. For the most part, required data are available at both interfaces. Minor variable conversions (potential temperature to dry bulb temperature) were needed. The greatest difference is in the gridding conventions used. Thus, in addition to the variable transformations, each of the gridded fields had to be transformed from a C- to B-grid and visa versa. These and other concerns are address in Section 2.3.

Table 1 Comparison of data at Aries to GFDL interface

Available at Aries/Dycore I/F
Description of variable
Aries Units
Needed by GFDL Dynamical Core
Description of variable
GFDL Units
Notes

Input Specifications

Horiz_grid
horizontal grid stucture

Dynam%Hgrid
see horiz_grid_mod

Initialized with ix, jx, ihalo, jhalo, halo_buffer, decomp, channel_model, tph0d_in, tlm0d_in (see horiz_grid_mod)

Vert_grid
vertical grid structure

Dynam&Vgrid
see vert_grid_mod

Initialized with eta, peta, or with sigma (peta not used) if the core is run in sigma coordinates (see vert_grid_mod)

n/a

Dynam%fis
geopotential height at
surface

Static, can provide in a file

n/a

Dynam%res
reciprical of surface eta

Not needed if GFDL core is run in sigma…

state%dt
dyanamics time step
s
Dynam%dt_dynam
dynamics time step
s
Aries dycore uses 2*state%dt for time n-1 to n+1, GFDL uses n to n+1

n/a

Dynam%num_adjust_dt
#of adjust time steps for each advection time step
 (4 recommended)

Could experiment, but 4 should be a good start

Input State Variables

horz_grid%jworld
horizontal grid info

Dynam%Hgrid%nlon
number of lon points

excludes halo points

horz_grid%iworld
horizontal grid info

Dynam%Hgrid%nlat
number of lat points

excludes halo points

vert_grid%lm

Dynam%Vgrid%nlev
number of eta levels

km

Var(1)%ntrace
number of tracers

n/a

Var%ntprog
number of prognostic variables

MUST BE 1 -- GFDL core will abort if not 1

UOB
U-wind
m/s
var(1)%u
U-wind
m/s

VOB
V-wind
m/s
var(1)%v
V-wind
m/s

POB
PI-weighted potential temperature
K
var(1)%t
Dry-bulb temperature
K

QOB
Mixing ratio
kg/kg
var(1)%r(q)
Mixing ratio
kg/kg

PIB
PI-weighted surface pressure
mb
var(1)%ps
Surface Pressure
Pa

n/a

var(1)%pssl
Surface Pressure adjusted to eta=1
Pa
Not needed if GFDL core is run in sigma…

Input State Increments

GFDL core does not seem to need increments in; they seem to be zero-ed out after each time step in the original code

UOI
U-wind Tendency
m/s/s
var_dt%u
U-wind Tendency
m/s/s

VOI
V-wind Tendency
m/s/s
var_dt%v
V-wind Tendency
m/s/s

POI
PI-weighted potential temperature tendency
K/s
var_dt%t
Dry-bulb temperature tendency
K/s

QOI
Mixing ratio Tendency
kg/kg/s
var_dt%r(q)
Mixing ratio tendency
kg/kg/s

PII
PI-weighted surface pressure tendency
mb/s
var_dt%ps
Surface Pressure tendency
Pa/s

var_dt%pssl
Surface Pressure tendency adjusted to eta=1
Pa/s
Will have to adjust to eta=1 in conversion module

Other potentially useful information

state%topo
Topography data

Needed for eta conversions?

vert%grid%ptop
Top pressure level of model

Needed for PI-weighted to non-weighted conversions

Table 2 Comparison of data at GFDL to Aries interface
Available at update_ dynamics I/F
Description of variable
GFDL Units
Needed by Aries calling code
Description of variable
Aries Units
Notes

var_dt%ps
Surface Pressure tendency
Pa/s
PII
PI-weighted surface pressure increment
mb/s

var_dt%u
U-wind Tendency
m/s/s
UOI
u wind increment
m/s/s

var_dt%v
V-wind Tendency
m/s/s
VOI
v wind increment
m/s/s

var_dt%t
Dry-bulb temperature tendency
K/s
POI
PI-weighted potential temperature increment
K/s

var_dt%r(q)
Mixing ratio tendency
kg/kg/s
QOI
specific humidity increment
kg/kg/s

omega
Vertical Wind Speed
mb/s
omega
vertical wind speed
mb/s

n/a

s-1
vorticity
vorticity
s-1
Vorticity calculated by dyamics_integral, but not returned to calling routine -- May not be needed (diagnostic only?)

n/a

s-1
divergence
divergence
s-1
Not calculated anywhere -- May not be needed (diagnostic only?)

avgke(:)
Average kinetic energy
?
ke
kinetic energy
?
KE calculated by dyamics_integral, but not returned to calling routine -- May not be needed (diagnostic only?)

2.3 Design issues

Although many of the inputs and outputs of the respective models are similar, the effort is far from a straightforward “plug and play” integration. Several issues in particular warranted in-depth consideration.

2.3.1 Grid conversion

To simplify initial implementation, it was decided to keep the grid resolution the same in and out of the dynamical core. In other words, the lattice locations of both the C- and B-grids are the same; the vector quantities are simply interpolated to locations one half grid point in the direction appropriate for the conversion direction and wind component. This design is based on existing DAO software for A- to C-grid conversions (atoc and ctoa) and used conversion routines to accomplish the C- to B-grid and B- to C-grid conversions (ctob and btoc, respectively). If different resolution grids are desired for later implementation, a more sophisticated interpolation method will be required.

2.3.2 Vertical coordinate

The Aries model operates on sigma coordinates. The GFDL B-grid core can operate both in eta and sigma coordinates. To eliminate a source of translation error as well as simplify the interface, it was decided to operate the dynamical core on the same sigma levels as Aries.

Internal code documentation does not highlight the capability to operate using sigma. Initial examination of the software indicated a translation from sigma to eta coordinates would be required. Later review of web-based documentation and examination of the code found an undocumented (at least in the software) capability to operate in sigma.

2.3.3 C-grid vs. B-grid initialization of B-grid core

Based on discussions with NSIPP personnel, an early design called for initializing the dynamical core with a B-grid restart to eliminate an initial interpolation error. However, this increased the number and scope of GFDL routines needed for inclusion in the GFDL library. The code needed to read the GFDL B-grid restart is contained deep within other routines well outside of the dynamical core. These would have to be included in the GFDL-grid library or the code to read and operate on the restart file would have to be extracted and implemented as a new GFDL B-grid routine. Either way, this added complexity to the task. Additionally, there are potential problems arising from differences in the state as defined in the Aries C-grid and GFDL B-grid restart files, both of which would be needed to initialize the model. Thus, it was decided to initialize the GFDL B-grid core based on the interpolated Aries C-grid state. If time allowed, an implementation of a GFDL B-grid initialization would be attempted.

2.3.4 Variable transformation (e.g., theta vs. T)

The variable transformations were fairly straightforward. For the most part, variables in both pieces of code matched quite well (unlike the Hybrid project that required conversion of u/v winds to vorticity and divergence). The major issue to consider was the proper calculation for conversion of potential temperature (used by Aries) to drybulb temperature (used by the GFDL dynamical core). Routines developed to support the Hybrid project were used here.

2.3.5 Time step

Aries uses leap-frog time stepping, while the GFDL code uses a single-step methodology. Although not a difficult issue to overcome, it does require diligence to ensure the tendencies from the correct time step are used for the interpolation.

2.3.6 Interpolation of tendency vs. state

To reduce interpolation error, the tendencies are interpolated (vice the states). Because smaller quantities are interpolated, the resulting interpolation errors are likewise smaller. However, the GFDL dynamical core requires the atmospheric state on a B-grid, this state would have to be maintained and updated within the B-grid routines so that it matched the C-grid state in the Aries routines.

2.4 Design

The design and related issues are discussed in the interim briefing provided on 26 October 2000 and are included in Annex B.

3. Implementation

As with the design process, the implementation process was divided into a series of steps. These steps and their status are discussed in following sections.

· Build the Aries model on the Cray T3E.

· Build the GFDL model on the T3E

· Design and implement the conversion utilities (grid and variables).

· Build a library of GFDL routines needed for the dynamical core.

· Develop a “coupler” module containing the GFDL routines needed to initialize and call the B-grid dynamical core.

· Integrate the coupler into the Aries code.

· Integrate the conversion utilities into the Aries code.

· Implement and integrate the state to tendencies conversion (and reverse).

· Modify Aries code to call conversion utilities and B-grid core.

· Modify Aries code to perform reverse conversion after return from B-grid call.

3.1 Build the Aries model on the T3E

The Aries model was built and compiled without difficulties.

3.2 Build the GFDL B-grid model on the T3E

The GFDL B-grid model was built and compiled without difficulties.

3.3 Build the conversion utilities (grid, variables)

3.3.1 Grid conversion

These functions perform the translation of the gridded data from the C-grid to B-grid and reverse. Three primary steps are needed in these grid transformations.

First, is a point-to-point copy of the mass variables at the interior points of the grid. Because the mass parameters are not defined at the poles of the C-grid, however, an interpolation of the mass variables is applied to get a representative value at the poles when going from C- to B-grids. Also, it is important to note that the B-grid has one more row in its array. Thus, a change of 1 in the j-index has to be carried through.

Next, the u-component of the wind field is interpolated a half gridpoint in the minus-y direction (for C- to B-grid) or plus-y direction (for B- to C-grid). Near the poles, where data for interpolation are not available, the wind field is extrapolated from surrounding points.

Finally, the v-component of the wind field is interpolated a half gridpoint in the +x direction (for C- to B-grid) or minus-x direction (for B- to C-grid). Again, a combination of extrapolation and interpolation is needed near the poles.

Because the Aries code can only pass data that has been ghosted by one grid point, the interpolation type is limited to a bi-linear interpolation. If a more sophisticated interpolation is desired, the Aries code will have to be modified to ghost multiple grid points.

These routines have been implemented and tested.

3.3.2 Variable conversion

These routines convert potential temperature to dry-bulb temperature, and surface pressure in mb to pressure in Pa. There were no difficulties in developing these functions as they were based on code developed for the Hybrid project. Winds and mixing ratio fields required no conversion.

These routines have been implemented and tested.

3.4 Build B-grid “library” – libgfdl.a

Relatively easily accomplished, essentially a compile of the GFDL software as a separate library.

3.5 Build “coupler” routine to initialize B-grid dynamics

The coupler contains calls to the B-grid routines to initialize the B-grid dynamics (grid and state structures). It was designed and implemented for later integration into Aries for the initialization of the B-grid structures. This coupler is completed.

3.6 Integrate coupler into Aries code

The coupler was then integrated into the Aries code and tests were run to see if the modified Aries could call the GFDL B-grid initialization routines. Because this step contains the routines to initialize the GFDL B-grid structures, it must be completed before remaining steps can be accomplished. Unfortunately, this is where all of the major problems occurred. The problems are detailed in Section 4.

3.7 Integrate conversion utilities into Aries code

After the coupler has been successfully integrated into the Aries code, the conversion utilities module can then be integrated and tested. However, because of the difficulties in integrating the coupler into Aries, this step could not be completed.

3.8 Implement and integrate state-to-tendencies-to-state

After the coupler has been successfully integrated into the Aries code, the routines to convert tendencies to state and maintain the B-grid state within the GFDL portion of the program can then be implemented and tested. However, because of the difficulties in integrating the coupler into Aries, this step could not be completed.

3.9 Add call to B-grid dynamics

After the coupler has been successfully integrated into the Aries code, the routines to call the B-grid dynamical core from within Aries can then be implemented and tested. However, because of the difficulties in integrating the coupler into Aries, this step could not be completed.

3.10 Add call to perform reverse conversion

After the coupler has been successfully integrated into the Aries code, the routines to perform the reverse conversion from B-grid tendencies to C-grid tendencies for Aries can then be implemented and tested. However, because of the difficulties in integrating the coupler into Aries, this step could not be completed.

4. Problems encountered

As expected, numerous problems were encountered during the implementation stages. Most of them did not center on "science" differences between the models, but rather on computational issues. This section describes the problems encountered in performing the interoperability task. Complete integration was not possible within the limited task resources in large part because of these problems.

4.1 Documentation / validation

4.1.1 Software Explanation

First and foremost, the lack of documentation simply explaining the inputs/outputs, options, and operating procedures of both pieces of software was a great hindrance. However, there are two areas in particular where the lack of documentation created difficulties.

4.1.2 Software/Library Dependencies

Extracting the B-Grid core software from the GFDL model seemed a simple task at first. However, as we pulled the needed routines and attempted to make a library containing only the dynamical core functions, it became clear that additional software was needed. This software fell under two categories – GFDL software and libraries

The GFDL software dependencies were not readily apparent. After examination of the code and selection of the needed dynamical core software, a build was attempted. Compile and link errors then pointed to the need to incorporate additional GFDL software. This process was repeated several times until the entire build was successfully completed.

The library dependencies were discovered similarly. When building the GFDL model, it was found that several libraries (netCDF, UD_units) were not installed on the T3E. These were installed and the build was successfully completed.

4.1.3 Hardware / OS / Compiler Dependencies

The limited documentation also did not provide any insight into which combinations of hardware, operating systems, and compilers for which the software was validated. Initial attempts to compile each piece of software with the default compilers caused compile errors. Eventually, older compilers (different versions for each piece of code) were successfully used to build the libraries.

4.2 Implementation

· Compiler dependencies: The Aries and GFDL codes are not validated for the same compilers. There was some initial concern about linking FORTRAN objects created with different compilers. This required a compilation of both models with the same compiler. Initially, the current Aries programming environment on the T3E was used. Unfortunately, this resulted in compile errors in the GFDL code. The next step was to move to a new programming environment, which was needed to compile the GFDL code. Both programs were successfully compiled at this point. However, the Aries code would no longer run. The problem was eventually traced to differences between the older and newer libraries in these programming environments. After bringing in the older libraries for Aries to link in, a successful execution was finally achieved.

· Although the Aries code was at one point validated for 64-bit precision, it has since been modified using only 32-bit precision. It is no longer validated for 64-bit precision. The GFDL code, on the other hand, was built and validated for 64-bit precision. Aside from potential execution problems, the change in precision across the Aries/GFDL interface could introduce problems. The GFDL FMS package was written for 64-bit operation and needed extensive re-write to operate at 32-bit precision. Thus, it was decided that a re-build of Aries with 64-bit precision would be less time consuming. However, the Aries code continued to fail as a 64-bit executable. Two weeks of debugging found an error in a call to an FFT. This was fixed, and the code was successfully run (but still not officially validated).

· Software/library dependencies: When building the GFDL libraries, compilation and linking required access to several libraries (e.g., netCDF, UD_units,) which were not initially installed on the target platform. Several Make attempts were required to determine the correct libraries to be installed. These libraries were installed on the Cray T3E. Documentation listing what specific libraries are required for building the executable would have been extremely helpful in reducing the amount of time needed to build these models. Ultimately, in a framework environment, a configuration management process should be implemented to track dependencies and associate them with each element of the framework.

· Parallelism: GFDL’s ghosting routines hard-wired halo region (single grid point) limited flexibility in choosing an interpolation scheme. As a short term solution, the design limited the interpolation type to use only 1 grid point ghosting -- at the expense of reduced accuracy. Ultimately, framework elements should be designed and implemented to allow variability in selection of the halo region at program start up.

· The Aries software opens Fortran default units for stdout, stderr, and stdin files. However, the GFDL software redefines these files as different unit numbers. These conflicts caused run time errors in the first attempts to integrate the coupler into the Aries code. The GFDL routines were re-written to redefine file designations.

· Domain/grid decomposition – Aries and GFDL domain decomposition are different (i.e., domain will be distributed differently among processors)

· The type of domain decomposition used by Aries is specified in a control file.

· The GFDL code uses an algorithm to distribute the decomposition. It also has a hidden capability to select distribution of the decomposition via internally set parameters. Internal changes to GFDL code are required in order to allow the B-grid dynamical core to accept these parameters from the Aries/GFDL coupler.

· A short term solution was to ensure number of processors is divisible by resolution. A longer term solution would be to modify GFDL code to allow access to the “hidden” capability and then validate this capability.

· The definition of both the Aries and GFDL couplers as modules caused memory conflicts between the two codes – as of the writing of this document, it was not clear if these were software or compiler problems.

· It is currently unknown why this problem occurred – it might have been a compiler bug (testing with different compilers was considered). The short-term solution was to not define these pieces of software as modules but as subroutines. This solution, however, creates other integration problems by not allowing the code to take advantage of f90 capabilities. Thus, the software could not have global access to all structures.

· A longer-term solution would have been to research the cause(s) of the problem and design and test solutions in order to retain definition as a module. However, resources ran out before this effort was completed.

· Initialization of polar filter fails: The Aries polar filters could not be initialized due to some unknown cause -- a first guess is that it could be compiler bug. Attempts to build and execute the software with different compilers would be educational. Alternatively, modifications to the software might also solve the problem.

5. Lessons Learned

5.1 Documentation, Documentation, Documentation

Arguably, the biggest impediment to the successful completion of this task was the lack of documentation (or in some cases, conflicting documentation). In most cases, understanding of the software could only be obtained by careful (and time consuming) inspection of the code or by interaction with the software authors. Because of the severely limited availability of these people, having adequate documentation is absolutely critical to future use of any software. Internal documentation was, for the most part, inadequate.

In several cases, external and internal documentation was at odds. For example, comments within the GFDL dynamical core indicated that the model ran only in eta coordinates (which drove the initial design to require a sigma to eta conversion). External documentation (buried inside some html files supplied with the code) indicated the model could be run in either sigma or eta coordinates; however, it was not clear how to specify the desired coordinate system. Careful inspection of the code eventually revealed how the dynamical core could be operated in sigma.

The following items should be documented:

· Functions/subroutines: these should contain information describing the purpose, arguments and dependencies (calls and called by)

· Structures: these should contain descriptions of the structure elements and some sort of graphical, or “tree” depiction

· Variables: major variables should be documented with a description, allowable ranges, and error conditions

· Environment: the operating environment under which the code has been validated should be described in terms of hardware, OS, compiler, and precision

· Makefiles: a short description should be provided that includes flags/settings/define statements/dependencies, and should contain an example executable with test drivers and sample output to compare output against when building under new environments

5.2 Codes validated for hardware/OS/compiler Combinations

Software should be, to some extent, validated on a representative combination of computing environments. When possible, software should be validated on the latest versions of compilers and operating systems when they are provided by the vendors.

5.3 Coding practices

Coding practices, in addition to improving the readability of software, also decrease the difficulty encountered when integrating individual components. The following aspects should be considered when developing a recommended set of coding practices for framework participants:

· Standardization:

· Standard file designations should be used (e.g., stderr, etc.)

· File unit numbers

· Constants/parameters (mks)

· Readability

· Variable names should be descriptive and follow a standard format

· File/subroutine/function scope should be limited to single or similar functions

· Internally set or "hard-wired" parameters should be avoided

· Parallelization

· Allow flexibility in specifying ghost/halo regions

· Allow user-selected decomposition schemes

5.4 File transfer

The transfer of data between components by files will also need to be addressed in a framework environment. Self describing files, such as those used by netCDF will simplify the exchange of data between framework components via file transfer.

5.5 Team expertise

When developing software components for framework components, the selection of expertise of team members should also be considered. In addition to the science and computational aspects of each component’s development, one additional area of expertise should be added. A team member with background in software development process will most certainly be able to assist with the ideas discussed above.

5.6 Process

It's very clear from this effort that a loosely standardized software process will be needed to make a framework environment work with minimal difficulty. This should include recommendations for configuration management, documentation, coding practices, and standardization. A “process support” group would be able to assist all framework participants in this area. These personnel would act as process facilitators rather than process enforcers. Having one group supporting all framework teams will greatly enhance the ability to standardize the means by which framework components are built, ensuring a smoother integration of all components.

6. Conclusion

It is often lamented that one of problems with standards is that there are so many from which to choose. Such is the case in this task. Considerable effort has gone into both NSIPP’s and GFDL’s efforts to create components and associated frameworks – a sort of standard – with excellent results. Because both were developed independently, however, each organization’s architecture and implementation choices were frequently incompatible with the other’s.

The primary goal of this effort was to investigate the interoperability of existing codes and to compile a list of lessons learned to support the earth science framework developers. The Aries model and the GFDL B-grid dynamical core were originally selected for this task because of their perceived “plug compatibility.” As components of their respective NSIPP and GFDL frameworks, it was hoped that the integration of these two pieces would be relatively straightforward.

Although both organizations’ software components were well written for integration into their respective frameworks, many difficulties arose when integrating them into a common framework. The aspects of grid and unit conversions were, for the most part, trivial; as were some design aspects aimed at reducing interpolation error. Additionally, limitations in the flexibility of the GFDL ghosting routines were easily worked around (perhaps at the expense of a more satisfactory interpolation). Somewhat more difficult were the tasks associated with getting both pieces of code compiled with the same precision and in the same executable (which required slight modifications to the GFI software). However, the serious difficulties arose when trying to execute calls to the GFDL routines from within the Aries model.

Over the course of this effort, we learned what aspects of software components need to be standardized along with the sorts of standards that need to be applied to make them viable framework elements. All of the difficulties and lessons learned highlight the need for rigorous documentation to support the kind of framework being developed under the Third Round of Grand Challenge Investigations.

A. Annex – Design Notes

See the Addendum to Task 3 Report Interoperability Demonstration -- Design Notes.

B. Annex – Design Data Flow Diagrams

See the Task 3 Interoperability Demonstration Report from 12 December 2000.

[image: image1.png]